100 research outputs found

    Global maps of soil temperature

    Get PDF
    JJL received funding from the Research Foundation Flanders (grant nr. 12P1819N). The project received funding from the Research Foundation Flanders (grants nrs, G018919N, W001919N). JVDH and TWC received funding from DOB Ecology. JA received funding from the University of Helsinki, Faculty of Science (MICROCLIM, grant nr. 7510145) and Academy of Finland Flagship (grant no. 337552). PDF, CM and PV received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833). JK received funding from the Arctic Interactions at the University of Oulu and Academy of Finland (318930, Profi 4), Maaja vesitekniikan tuki ry., Tiina and Antti Herlin Foundation, Nordenskiold Samfundet and Societas pro Fauna et Flora Fennica. MK received funding from the Czech Science Foundation (grant nr. 20-28119S) and the Czech Academy of Sciences (grant nr. RVO 67985939). TWC received funding from National Geographic Society grant no. 9480-14 and WW-240R-17. MA received funding from CISSC (program ICRP (grant nr:2397) and INSF (grant nr: 96005914). The Royal Botanic Garden Edinburgh is supported by the Scottish Government's Rural and Environment Science and Analytical Services Division. JMA received funding from the Funding Org. Qatar Petroleum (grant nr. QUEX-CAS-QP-RD-18/19). JMA received funding from the European Union's Horizon 2020 research and innovation program (grant no. 678841) and from the Swiss National Science Foundation (grant no. 31003A_176044). JA was supported by research grants LTAUSA19137 (program INTER-EXCELLENCE, subprogram INTER-ACTION) provided by Czech Ministry of Education, Youth and Sports and 20-05840Y of the Czech Science Foundation. AA was supported by the Ministry of Science and Higher Education of the Russian Federation (grant FSRZ-2020-0014). SN, UAT, JJA, and JvO received funding from the Independent Research Fund Denmark (7027-00133B). LvdB, KT, MYB and RC acknowledge funding from the German Research Foundation within the Priority Program SPP-1803 'EarthShape: Earth Surface Shaping by Biota' (grant TI 338/14-1&2 and BA 3843/6-1). PB was supported by grant project VEGA of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences No. 2/0132/18. Forest Research received funding from the Forestry Commission (climate change research programme). JCB acknowledges the support of Universidad Javeriana. JLBA received funding from the Direccion General de Cambio Climatico del Gobierno de Aragon; JLBA acknowledges fieldwork assistance by Ana Acin, the Ordesa y Monte Perdido National Park, and the Servicio de Medio Ambiente de Soria de la Junta de Castilla y Leon. RGB and MPB received funding from BECC - Biodiversity and Ecosystem services in a Changing Climate. MPB received funding from The European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement No. 657627 and The Swedish Research Council FORMAS - future research leaders No. 2016-01187. JB received funding from the Czech Academy of Sciences (grant nr. RVO 67985939). NB received funding from the SNF (grant numbers 40FA40_154245, 20FI21_148992, 20FI20_173691, 407340_172433) and from the EU (contract no. 774124). ICOS EU research infrastructure. EU FP7 NitroEurope. EU FP7 ECLAIRE. The authors from Biological Dynamics of Forest Fragments Project, PDBFF, Instituto Nacional de Pesquisas da Amazonia, Brazil were supported by the MCTI/CNPq/FNDCT - AcAo Transversal no68/2013 - Programa de Grande Escala da Biosfera-Atmosfera na Amazonia - LBA; Project 'Como as florestas da Amazonia Central respondem as variacoes climaticas? Efeitos sobre dinamica florestal e sinergia com a fragmentacAo florestal'. This is the study 829 of the BDFFP Technical Series. to The EUCFLUX Cooperative Research Program and Forest Science and Research Institute-IPEF. NC acknowledges funding by Stelvio National Park. JC was funded by the Spanish government grant CGL2016-78093-R. ANID-FONDECYT 1181745 AND INSTITUTO ANTARTICO CHILENO (INACH FR-0418). SC received funding from the German Research Foundation (grant no. DFG- FZT 118, 202548816). The National Science Foundation, Poland (grant no. UMO-2017/27/B/ST10/02228), within the framework of the 'Carbon dioxide uptake potential of sphagnum peatlands in the context of atmospheric optical parameters and climate changes' (KUSCO2) project. SLC received funding from the South African National Research Foundation and the Australian Research Council. FM, M, KU and MU received funding from Slovak Research and Development Agency (no. APVV-19-0319). Instituto Antartico Chileno (INACH_RT-48_16), Iniciativa Cientifica Milenio Nucleo Milenio de Salmonidos Invasores INVASAL, Institute of Ecology and Biodiversity (IEB), CONICYT PIA APOYO CCTE AFB170008. PC is supported by NERC core funding to the BAS 'Biodiversity, Evolution and Adaptation Team. EJC received funding from the Norwegian Research Council (grant number 230970). GND was supported by NERC E3 doctoral training partnership grant (NE/L002558/1) at the University of Edinburgh and the Carnegie Trust for the Universities of Scotland. Monitoring stations on Livingston Island, Antarctica, were funded by different research projects of the Gobern of Spain (PERMAPLANET CTM2009-10165-E; ANTARPERMA CTM2011-15565-E; PERMASNOW CTM2014-52021-R), and the PERMATHERMAL arrangement between the University of Alcala and the Spanish Polar Committee. GN received funding from the Autonomous Province of Bolzano (ITA). The infrastructure, part of the UK Environmental Change Network, was funded historically in part by ScotNature and NERC National Capability LTS-S: UK-SCAPE; NE/R016429/1). JD was supported by the Czech Science Foundation (GA17-19376S) and MSMT (LTAUSA18007). ED received funding from the Kempe Foundation (JCK-1112 and JCK-1822). The infrastructure was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme I (NPU I), grant number LO1415 and by the project for national infrastructure support CzeCOS/ICOS Reg. No. LM2015061. NE received funding from the German Research Foundation (DFG- FZT 118, 202548816). BE received funding from the GLORIA-EU project no EVK2-CT2000-00056, the Autonomous Province of Bolzano (ITA), from the Tiroler Wissenschaftsfonds and from the University of Innsbruck. RME was supported by funding to the SAFE Project from the Sime Darby Foundation. OF received funding from the German Research Foundation (DFG- FZT 118, 202548816). EFP was supported by the Jardin Botanico Atlantico (SV-20-GIJON-JBA). MF was funded by the German Federal Ministry of Education and Research (BMBF) in the context of The Future Okavango (Grant No. 01LL0912) and SASSCAL (01LG1201M; 01LG1201N) projects. EFL received funding from ANID PIA / BASAL FB210006. RAG received funding from Fondecyt 11170516, CONICYT PIA AFB170008 and ANID PIA / BASAL FB210006. MBG received funding from National Parks (DYNBIO, #1656/2015) and The Spanish Research Agency (VULBIMON, #CGL2017-90040-R). MG received funding from the Swiss National Science Foundation (ICOS-CH Phase 2 20FI20_173691). FG received funding from the German Research Foundation (DFG- FZT 118, 202548816). KG and TS received funding from the UK Biotechnology and Biological Research Council (grant = 206/D16053). SG was supported by the Research Foundation Flanders (FWO) (project G0H1517N). KJ and PH received funding from the EU Horizon2020 INFRAIA project eLTER-PLUS (871128), the project LTER-CWN (FFG, F&E Infrastrukturforderung, project number 858024) and the Austrian Climate Research Program (ACRP7 - CentForCSink - KR14AC7K11960). SH and ARB received funding through iDiv funded by the German Research Foundation (DFG- FZT 118, 202548816). LH received funding from the Czech Science Foundation (grant nr. 20-28119S) and the Czech Academy of Sciences (grant nr. RVO 67985939). MH received funding from the Baden-Wurttemberg Ministry of Science, Research and Arts via the project DRIeR (Drought impacts, processes and resilience: making the in-visible visible). LH received funding from International Polar Year, Weston Foundation, and ArcticNet. DH received funding from Natural Sciences and Engineering Council (Canada) (RGPIN-06691). TTH received funding from Independent Research Fund Denmark (grant no. 8021-00423B) and Villum Foundation (grant no. 17523). Ministry of Education, Youth and Sports of the Czech Republic (projects LM2015078, VAN2020/01 and CZ.02.1.01/0.0/0.0/16_013/0001708). KH, CG and CJD received funding from Bolin Centre for Climate Research, Stockholm University and from the Swedish research council Formas [grant n:o 2014-00530 to KH]. JJ received funding from the Funding Org. Swedish Forest Society Foundation (grant nr. 2018-485-Steg 2 2017) and Swedish Research Council FORMAS (grant nr. 2018-00792). AJ received funding from the German Federal Ministry of Education and Research BMBF (Grant Nr. FKZ 031B0516C SUSALPS) and the Oberfrankenstiftung (Grant Nr. OFS FP00237). ISJ received funding from the Energy Research Fund (NYR-11 - 2019, NYR-18 - 2020). TJ was supported by a UK NERC Independent Research Fellowship (grant number: NE/S01537X/1). RJ received funding from National Science Centre of Poland (grant number: 2016/21/B/ST10/02271) and Polish National Centre for Research and Development (grant number: Pol-Nor/203258/31/2013). VK received funding from the Czech Academy of Sciences (grant nr. RVO 67985939). AAK received funding from MoEFCC, Govt of India (AICOPTAX project F. No. 22018/12/2015/RE/Tax). NK received funding from FORMAS (grants nr. 2018-01781, 2018-02700, 2019-00836), VR, support from the research infrastructure ICOS-SE. BK received funding from the National Research, Development and Innovation Fund of Hungary (grant nr. K128441). Ministry of Education, Youth and Sports of the Czech Republic (projects LM2015078 and CZ.02.1.01/0.0/0.0/16_013/0001708). Project B1-RNM-163-UGR-18-Programa Operativo FEDER 2018, partially funded data collection. Norwegian Research Council (NORKLIMA grants #184912 and #244525) awarded to Vigdis Vandvik. MM received funding from the Czech Science Foundation (grant nr. 20-28119S) and the Czech Academy of Sciences (grant nr. RVO 67985939). Project CONICYT-PAI 79170119 and ANID-MPG 190029 awarded to Roy Mackenzie. This work was partly funded by project MIUR PON Cluster OT4CLIMA. RM received funding from the SNF project number 407340_172433. FM received funding from the Stelvio National Park. PM received funding from AIAS-COFUND fellowship programme supported by the Marie Skodowska- Curie actions under the European Union's Seventh Framework Pro-gramme for Research, Technological development and Demonstration (grant agreement no 609033) and the Aarhus University Research Foundation, Denmark. RM received funding from the Ministry of Education, Youth and Sports of the Czech Republic (project LTT17033). SM and VM received funding from EU FP6 NitroEurope (grant nr. 17841), EU FP7 ECLAIRE (grant nr. 282910), the Ministry of Education and Science of Ukraine (projects nr. 505, 550, 574, 602), GEF-UNEP funded "Toward INMS" project (grant nr. NEC05348) and ENI CBC BSB PONTOS (grant nr. BSB 889). The authors from Biological Dynamics of Forest Fragments Project, PDBFF, Instituto Nacional de Pesquisas da Amazonia, Brazil were supported by the MCTI/CNPq/FNDCT - AcAo Transversal no68/2013 - Programa de Grande Escala da Biosfera-Atmosfera na Amazonia - LBA; Project 'Como as florestas da Amazonia Central respondem as variacoes climaticas? Efeitos sobre dinamica florestal e sinergia com a fragmentacAo florestal'. FJRM was financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072) and Research Foundation Flanders (FWO-SBO grant S000619N). STM received funding from New Frontiers in Research Fund-Exploration (grant nr. NFRF-2018-02043) and NSERC Discovery. MMR received funding from the Australian Research Council Discovery Early Career Research Award (grant nr. DE180100570). JAM received funding from the National Science Foundation (DEB 1557094), International Center for Advanced Renewable Energy and Sustainability (I-CARES) at Washington University in St. Louis, ForestGEO, and Tyson Research Center. IM-S was funded by the UK Natural Environment Research Council through the ShrubTundra Project (NE/M016323/1). MBN received funding from FORMAS, VR, Kempe Foundations support from the research infrastructures ICOS and SITES. MDN received funding from CONICET (grant nr. PIP 112-201501-00609). Spanish Ministry of Science grant PID2019-110521GB-I00 and Catalan government grant 2017-1005. French National Research Agency (ANR) in the frame of the Cluster of Excellence COTE (project HydroBeech, ANR-10-LABX-45). VLIR-OUS, under the Institutional University Coorperation programme (IUC) with Mountains of the Moon University. Project LAS III 77/2017/B entitled: \"Estimation of net carbon dioxide fluxes exchanged between the forest ecosystem on post-agricultural land and between the tornado-damaged forest area and the atmosphere using spectroscopic and numerical methods\", source of funding: General Directorate of State Forests, Warsaw, Poland. Max Planck Society (Germany), RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-45-242908. Estonian Research Council (PRG609), and the European Regional Development Fund (Centre of Excellence EcolChange). Canada-Denmark Arctic Research Station Early Career Scientist Exchange Program, from Polar knowledge Canada (POLAR) and the Danish Agency for Science and Higher Education. AP received funding from Fondecyt 1180205, CONICYT PIA AFB170008 and ANID PIA / BASAL FB210006. MP received funding from the Funding Org. Knut and Alice Wallenberg Foundation (grant nr. 2015.0047), and acknowledges funding from the Swedish Research Council (VR) with contributing research institutes to both the SITES and ICOS Sweden infrastructures. JP and RO were funded by the Spanish Ministry of Science grant PID2019-110521GB-I00, the fundacion Ramon Areces grant ELEMENTAL-CLIMATE, and the Catalan government grant 2017-1005. MPB received funding from the Svalbard Environmental Protection Fund (grant project number 15/128) and the Research Council of Norway (Arctic Field Grant, project number 269957). RP received funding from the Ministry of Education, Youth and Sports of the Czech Republic (grant INTER-TRANSFER nr. LTT20017). LTSER Zone Atelier Alpes; Federation FREE-Alpes. RP received funding from a Humboldt Fellowship for Experienced Researchers. Prokushkin AS and Zyryanov VI contribution has been supported by the RFBR grant #18-05-60203-Arktika. RPu received founding from the Polish National Science Centre (grant project number 2017/27/B/NZ8/00316). ODYSSEE project (ANR-13-ISV7-0004, PN-II-ID-JRP-RO-FR-2012). KR was supported through an Australian Government Research Training Program Scholarship. Fieldwork was supported by the Global Challenges program at the University of Wollongong, the ARC the Australian Antarctic Division and INACH. DR was funded by the project SUBANTECO IPEV 136 (French Polar Institute Paul-Emile Victor), Zone Atelier CNRS Antarctique et Terres Australes, SAD Region Bretagne (Project INFLICT), BiodivERsa 2019-2020 BioDivClim call 'ASICS' (ANR-20-EBI5-0004). SAR received funding from the Australian Research Council. NSF grant #1556772 to the University of Notre Dame. Pavia University (Italy). OR received funding from EU-LEAP-Agri (RAMSES II), EU-DESIRA (CASSECS), EU-H2020 (SustainSahel), AGROPOLIS and TOTAL Foundations (DSCATT), CGIAR (GLDC). AR was supported by the Russian Science Foundation (Grant 18-74-10048). Parc national des Ecrins. JS received funding from Vetenskapsradet grant nr (No: 2014-04270), ALTER-net multi-site grant, River LIFE project (LIFE08 NAT/S/000266), Flexpeil. Helmholtz Association long-term research program TERENO (Terrestrial Environmental Observatories). PS received funding from the Polish Ministry of Science and Higher Education (grant nr. N N305 304840). AS acknowledges funding by ETH Zurich project FEVER ETH-27 19-1. LSC received funding from NSERC Canada Graduate Scholarship (Doctoral) Program; LSC was also supported by ArcticNet-NCE (insert grant #). Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (141513/2017-9); FundacAo Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (E26/200.84/2019). ZS received funding from the SRDA (grants nos. APVV-16-0325 and APVV-20-0365) and from the ERDF (grant no. ITMS 313011S735, CE LignoSilva). JS, MB and CA received funding from core budget of ETH Zurich. State excellence Program M-V \"WETSCAPES\". AfricanBioServices project funded by the EU Horizon 2020 grant number 641918. The authors from KIT/IMK-IFU acknowledge the funding received within the German Terrestrial Environmental Observatories (TERENO) research program of the Helmholtz Association and from the Bavarian Ministry of the Environment and Public Health (UGV06080204000). Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 192626868, in the framework of the collaborative German-Indonesian research project CRC 990 (SFB): 'EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)'. MS received funding from the Ministry of Education, Youth and Sports of the Czech Republic (grant nr. INTER-TRANSFER LTT19018). TT received funding from the Swedish National Space Board (SNSB Dnr 95/16) and the CASSECS project supported by the European Union. HJDT received funding from the UK Natural Environment Research Council (NERC doctoral training partnership grant NE/L002558/1). German Science Foundation (DFG) GraKo 2010 \"Response\". PDT received funding from the MEMOIRE project (PN-III-P1-1.1-PD2016-0925). Arctic Challenge for Sustainability II (ArCS II; JPMXD1420318865). JU received funding from Czech Science Foundation (grant nr. 21-11487S). TU received funding from the Romanian Ministry of Education and Research (CCCDI - UEFISCDI -project PN-III-P2-2.1-PED-2019-4924 and PN2019-2022/19270201-Ctr. 25N BIODIVERS 3-BIOSERV). AV acknowledge funding from RSF, project 21-14-00209. GFV received funding from the Dutch Research Council NWO (Veni grant, no. 863.14.013). Australian Research Council Discovery Early Career Research Award DE140101611. FGAV received funding from the Portuguese Science Foundation (FCT) under CEECIND/02509/2018, CESAM (UIDP/50017/2020+UIDB/50017/2020), FCT/MCTES through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. Ordesa y Monte Perdido National Park. MVI received funding from the Spanish Ministry of Science and Innovation through a doctoral grant (FPU17/05869). JW received funding from the Czech Science Foundation (grant nr. 20-28119S) and the Czech Academy of Sciences (grant nr. RVO 67985939). CR and SW received funding from the Swiss Federal Office for the Environment (FOEN) and the de Giacomi foundation. YY received funding from the National Natural Science Foundation of China (Grant no. 41861134039 and 41941015). ZY received funding from the National Natural Science Foundation of China (grant nr. 41877458). FZ received funding from the Swiss National Science Foundation (grant nr. 172198 and 193645). PZ received funding from the Funding Org. Knut and Alice Wallenberg Foundation (grant no. 2015.0047). JL received funding from (i) the Agence Nationale de la Recherche (ANR), under the framework of the young investigators (JCJC) funding instrument (ANR JCJC Grant project NoANR-19-CE32-0005-01: IMPRINT) (ii) the Centre National de la Recherche Scientifique (CNRS) (Defi INFINITI 2018: MORFO); and the Structure Federative de Recherche (SFR) Condorcet (FR CNRS 3417: CREUSE). Fieldwork in the Arctic got facilitated by funding from the EU INTERACT program. SN, UAT, JJA and JvO would like to thank the field team of the Vegetation Dynamics group for their efforts and hard work. We acknowledge Dominique Tristan for letting access to the field. For the logistic support the crew of INACH and Gabriel de Castilla Station team on Deception Island. We thank the Inuvialuit and Kluane First Nations for the opportunity to work on their land. MAdP acknowledges fieldwork assistance and logistics support to Unidad de Tecnologia Marina CSIC, and the crew of Juan Carlos I and Gabriel de Castilla Spanish Antarctic Stations, as well as to the different colleagues from UAH that helped on the instrument maintenance. ERF acknowledges fieldwork assistance by Martin Heggli. MBG acknowledges fieldwork and technical assistance by P Abadia, C Benede, P Bravo, J Gomez, M Grasa, R Jimenez, H Miranda, B Ponz, J Revilla and P Tejero and the Ordesa and Monte Perdido National Park staff. LH acknowledges field assistance by John Jacobs, Andrew Trant, Robert Way, Darroch Whitaker; we acknowledge the Inuit of Nunatsiavut, and the Co-management Board of Torngat Mountains National Park for their support of this project and acknowledge that the field research was conducted on their traditional lands. We thank our many bear guides, especially Boonie, Eli, Herman, John and Maria Merkuratsuk. AAK acknowledges field support of Akhtar Malik, Rameez Ahmad. Part of microclimatic records from Saxony was funded by the Saxon Switzerland National Park Administration. Tyson Research Center. JP acknowledges field support of Emmanuel Malet (Edytem) and Rangers of Reserves Naturelles de Haute-Savoie (ASTERS). Practical help: Roel H. Janssen, N. Huig, E. Bakker, Schools in the tepaseforsoket, Forskar fredag, Erik Herberg. The support by the Bavarian Forest National Pa

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Hiking trails shift plant species' realized climatic niches and locally increase species richness

    Get PDF
    Aim The presence and use of trails may change plant species' realized climatic niches via modified abiotic and biotic conditions including propagule transport, allowing competition-pressed alpine species to expand their rear edges towards warmer locations and lowland species to extend their leading edges towards cooler locations. We investigated whether mountain trails indeed act as corridors for colonization and shift species' realized climatic niches, resulting in higher species richness in trailsides. Location Dovrefjell and Abisko area in the Scandes mountains of Norway and Sweden. Methods We surveyed plant community composition and disturbances along 16 hiking trails in summer 2018 (Dovrefjell) and 2019 (Abisko). We linked changes in species' realized climatic niches to their climatic optimum and variation in species richness to climate, trail effects and resident plant community characteristics. Results Plant species richness was on average 24% greater in trailside than in interior vegetation plots. Proximity to trails accounted for 9% and climatic harshness for 55% of variation in species richness explained in our model. Trailsides increased in richness, especially in relatively species-poor sites and close to introduction points (each accounting for 24% of variation in our model of species gains). Shifts in rear edges and optima of realized climatic niches along trails related to species' undisturbed climatic optimum, with alpine species being more likely to move into warmer locations. While some disturbance-associated species shifted their leading edges towards colder locations, contrary to expectations this was not the case for lowland species. Overall, shifts in climatic niches resulted in more species' niches overlapping in trailsides than in the interior vegetation. Main conclusion Trails can locally increase species richness by creating opportunities for colonizing species and weaker competitors. Because of prevailing disturbance, they may even provide opportunities for persistence and downward expansion of alpine species, aiding conservation efforts

    Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients

    Get PDF
    Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.EEA BarilocheFil: Haider, Sylvia. German Centre for Integrative Biodiversity Research; AlemaniaFil: Haider, Sylvia. Martin Luther University. Institute of Biology. Geobotany and Botanical Garden; AlemaniaFil: Lembrechts, Jonas Johan. University of Antwerp. Centre of Excellence Plants and Ecosystems (PLECO); BélgicaFil: McDougall, Keith. Department of Planning, Industry and Environment; AustraliaFil: Pauchard, Aníbal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; ChileFil: Pauchard, Aníbal. Institute of Ecology and Biodiversity (IEB); ChileFil: Alexander, Jake M. Institute of Integrative Biology; SuizaFil: Barros, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales (IANIGLA); ArgentinaFil: Cavieres, Lohengrin A. Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas. Departamento de Botánica; ChileFil: Cavieres, Lohengrin A. Institute of Ecology and Biodiversity (IEB); ChileFil: Rashid, Irfan. University of Kashmir. Department of Botany; IndiaFil: Rew, Lisa J. Montana State University. Department of Land Resource and Environmental Sciences; Estados UnidosFil: Aleksanyan, Alla. Institute of Botany aft. A.L. Takhtajyan NAS RA. Department of Geobotany and Plant Ecophysiology; ArmeniaFil: Aleksanyan, Alla. Armenian National Agrarian University. Chair of Biology and Biotechnologies; ArmeniaFil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Seipel, Tim. Montana State University. Department of Land Resource and Environmental Sciences; Estados Unido

    Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients

    Get PDF
    The Andes mountain range in South America has a high level of endemism and is a major source of ecosystem services. The Andes is increasingly threatened by anthropogenic disturbances that have allowed the establishment of non-native plants, mainly in the lower elevation areas. However, synergies between climate change and anthropogenic pressure are promoting the spread of non-native plants to higher elevation areas. In this article, we evaluate and identify the main non-native plants invading Andean ecosystems, and assess their taxonomic families, growth forms and distribution patterns. Based on a systematic literature review, we identified the importance of climatic and anthropogenic factors as drivers of non-native species establishment in Andean ecosystems and the main impacts of non-native plants in the Andes. We then identified research gaps across each biogeographic region in the Andes. Finally, we highlight key elements to better tackle the problem of non-native plant invasions in Andean ecosystems, including the need for a systematic monitoring of invasion patterns and spread (e.g. MIREN protocol) and a common policy agenda across international borders for the prevention and management of non-native plants in this highly vulnerable region.Fil: Fuentes Lillo, Eduardo. Universidad de Concepción; Chile. Universiteit Antwerp; BélgicaFil: Lembrechts, Jonas J.. Universiteit Antwerp; BélgicaFil: Barros, Ana Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Aschero, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Bustamante, Ramiro O.. Universidad de Chile; ChileFil: Cavieres, Lohengrin A.. Universidad de Concepción; ChileFil: Clavel, Jan. Universiteit Antwerp; BélgicaFil: Herrera, Ileana. Universidad Espíritu Santo; EcuadorFil: Jiménez, Alejandra. Universidad de Concepción; ChileFil: Tecco, Paula Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Hulme, Philip E.. Lincoln University.; Nueva ZelandaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Rozzi, Ricardo. University of North Texas; Estados UnidosFil: García, Rafael A.. Universidad de Concepción; ChileFil: Simberloff, Daniel. University of Tennessee; Estados UnidosFil: Nijs, Ivan. Universiteit Antwerp; BélgicaFil: Pauchard, Aníbal. Universidad de Concepción; Chil

    Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    Get PDF
    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 degrees C in annual temperature 511-878mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (M-r). M-r and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km(2) resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km(2) pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10 degrees C (mean = 3.0 +/- 2.1 degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/- 2.3 degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 +/- 2.3 degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Peer reviewe

    Forest microclimates and climate change: importance, drivers and future research agenda

    Get PDF
    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.Peer reviewe

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Full text link
    Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding
    corecore